115 research outputs found

    Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    Get PDF
    5 páginas, 8 figuras, 1 tabla.-- El pdf del artículo es el manuscrito de autor.This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under the project MAT2009-14542-C02 and the Government of the Principality of Asturias through PCTI and ERDF (European Regional Development Fund) 2007-2013 under project PC10-65. C.F. Gutierrez- Gonzalez acknowledges CSIC and ESF for the concession of a JAE-Doc 2009 grant. S. Agouram thanks the Spanish Ministry of Science and European Social Fund for financial support.Peer reviewe

    Electrochemically generated peryleniumyl-hexafluorophosphate and hexafluoroarsenate : new one-dimensional metals

    Get PDF
    Compounds of stoichiometry (pe)2(PF6)1.1x times 0.8CH2Cl2(1) (pe = perylene), (pe)2(AsF6)1.1 timesx 0.7 CH2Cl2 (2), (pe)2(PF6)1.4 times 0.6 THF (3), (pe)2(AsF6)1.5x times 0.5 THF (4) and (pe)3(SbF6)2 times 0.75 CH2Cl2 (5) have been obtained as crystalline samples by electrochemical deposition from CH2Cl2 [(1), (2) and (5)] or from THF [(3) and (4)] solutions of perylene, containing the appropriate counterion. The three compounds (1)-(3) crystallize in isomorphous orthorhombic lattices. (1) forms black needles: space group Pnmn with a = 4.285 Aring, b = 12.915 Aring and c = 14.033 Aring, z = 1. (2) gives black needles, orthorhombic space group Pnmn with a = 4.294 Aring, b = 13.077 Aring, and c = 14.132 Aring, z = 1. The structures of (1) and (2) were solved by direct methods and refined by least squares to final R = 0.148 and R = 0.088 based on 476 and 322 observed reflections. The perylene forms segregated stacks in direction of the a-axis with interplanar distances of 3.40 Aring and an angle of 37.7° between the bc-plane and the perylene. The channels between the segregated stacks are filled by anions and solvent molecules. The d.c. conductivities (four probe measurements) of (1)-(4) fall in the range of 70-1200Ω-1. cm-1 at room temperature. The conductivities show a metallic regime down to about 200°K and drop off below that temperature

    Реалізація цифрової системи автоматичного керування безперервним об'єктом, на основі фізичної моделі теплового об'єкта з використанням scada системи ZENON

    Get PDF
    У статті наведена методика поетапної реалізації системи цифрового керування безперервним об'єктом, реалізованої на персональному комп'ютері, що дозволила максимально наблизити модель до реальної системи керування й виконати ефективне тестування її функціонування в невиробничих умовах

    Electrochemical synthesis of new one-dimensional metals: radical salts of perylene

    Get PDF
    The electrochemical synthesis of four highly conducting peryleniumyl salts is reported. The temperature dependence of the conductivity has been measured and exhibits a metallic regime between 200-300 K. The crystal structures of two of the compounds have been solved

    A search for spectral hysteresis and energy-dependent time lags from X-ray and TeV gamma-ray observations of Mrk 421

    Get PDF
    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three "target-of-opportunity" (ToO) observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g. the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at 4×104\gtrsim 4\times 10^{-4} Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.Comment: 45 pages, 15 figure

    Measurement of the Extragalactic Background Light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z = 1

    Get PDF
    We present a measurement of the extragalactic background light (EBL) based on a joint likelihood analysis of 32 gamma-ray spectra for 12 blazars in the redshift range z = 0.03 to 0.944, obtained by the MAGIC telescopes and Fermi-LAT. The EBL is the part of the diffuse extragalactic radiation spanning the ultraviolet, visible and infrared bands. Major contributors to the EBL are the light emitted by stars through the history of the universe, and the fraction of it which was absorbed by dust in galaxies and re-emitted at longer wavelengths. The EBL can be studied indirectly through its effect on very-high energy photons that are emitted by cosmic sources and absorbed via photon-photon interactions during their propagation across cosmological distances. We obtain estimates of the EBL density in good agreement with state-of-the-art models of the EBL production and evolution. The 1-sigma upper bounds, including systematic uncertainties, are between 13% and 23% above the nominal EBL density in the models. No anomaly in the expected transparency of the universe to gamma rays is observed in any range of optical depth.We also perform a wavelength-resolved EBL determination, which results in a hint of an excess of EBL in the 0.18 - 0.62 μ\mum range relative to the studied models, yet compatible with them within systematics.Comment: Accepted by MNRA

    The Astropy Project: Building an inclusive, open-science project and status of the v2.0 core package

    Get PDF
    The Astropy project supports and fosters the development of open-source and openly-developed Python packages that provide commonly-needed functionality to the astronomical community. A key element of the Astropy project is the core package Astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of inter-operable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy project

    Monitoring of the radio galaxy M87 during a low emission state from 2012 to 2015 with MAGIC

    Get PDF
    M87 is one of the closest (z=0.00436) extragalactic sources emitting at very-high-energies (VHE, E > 100 GeV). The aim of this work is to locate the region of the VHE gamma-ray emission and to describe the observed broadband spectral energy distribution (SED) during the low VHE gamma-ray state. The data from M87 collected between 2012 and 2015 as part of a MAGIC monitoring programme are analysed and combined with multi-wavelength data from Fermi-LAT, Chandra, HST, EVN, VLBA and the Liverpool Telescope. The averaged VHE gamma-ray spectrum can be fitted from 100GeV to 10TeV with a simple power law with a photon index of (-2.41 ±\pm 0.07), while the integral flux above 300GeV is (1.44±0.13)×1012cm2s1(1.44 \pm 0.13) \times 10^{-12} cm^{-2} s^{-1}. During the campaign between 2012 and 2015, M87 is generally found in a low emission state at all observed wavelengths. The VHE gamma-ray flux from the present 2012-2015 M87 campaign is consistent with a constant flux with some hint of variability (3σ\sim3\sigma) on a daily timescale in 2013. The low-state gamma-ray emission likely originates from the same region as the flare-state emission. Given the broadband SED, both a leptonic synchrotron self Compton and a hybrid photo-hadronic model reproduce the available data well, even if the latter is preferred. We note, however, that the energy stored in the magnetic field in the leptonic scenario is very low suggesting a matter dominated emission region

    Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period

    Get PDF
    We report on observations of the pulsar / Be star binary system PSR J2032+4127 / MT91 213 in the energy range between 100 GeV and 20 TeV with the VERITAS and MAGIC imaging atmospheric Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new, point-like, gamma-ray source is detected, coincident with the location of PSR J2032+4127 / MT91 213. The gamma-ray light curve and spectrum are well-characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar / Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope (XRT) on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130

    De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry

    Get PDF
    Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells
    corecore